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The Nonuniform Hard-Rod Fluid Revisited 
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The statistical mechanics of the one-dimensional nonuniform pure hard-core 
fluid is formulated in the spirit of the Reiss-Frisch-Lebowitz (RFL) scaled 
particle theory. By emphasizing the importance of the core dependence, 
a more intuitive and simpler derivation can be given. The Wiener-Hopf-type 
construction of the pair direct correlation function is formulated via the Dyson 
variational method of inverse scattering theory, which is compared with the 
particle-hole theory. The new approach allows us to lift the global free energy 
functional into a larger space where all the symmetries become apparent. 

KEY WORDS: Hard-rod fluid; nonuniform; variational principle; Wiene~ 
Hopf factorization; scaled particle theory. 

1. I N T R O D U C T I O N  

The study of the structure of nonuniform iluids has attracted more and 
more attention (see, e.g., ref. 1). Much of the progress has relied upon the 
knowledge of hard-core fluids, just as had been the case for uniform fluids. 
As in any other field, exactly solvable models are rare. But once they are 
found, there will be profound impact on our understanding, which will help 
us to create more effective approximation schemes. One such example 
is the classical hard-rod fluid in an external field. The exact solution 
was given by Percus (2) in 1976 using density functional theory, and the 
corresponding discrete version was solved by Robledo (3) in 1979 using 
potential distribution theory. These results were used to produce better 
approximate solutions for higher-dimensional mOdels (3'4) and mixtures. (5) 

In this paper, we would like to reexamine the model from a different 
viewpoint in order to fully appreciate the beauty of the model and firmly 
grasp the physical content of the solution. Therefore, this paper may be 
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regarded as complementary to refs. 2 and 3. In Section 2, we start with the 
corresponding discrete model, derive a pair of "characteristic equations," 
and use it to find the (inverse) profile equation. In Section 3, we obtain the 
continuum limit by introducing local pressure fields. In Section 4, we 
reverse the logic and present a simple physical approach by RFL scaled- 
particle-type reasoning. In Section 5, we point out the relation between the 
Wiener-Hopf factorization of the pair direct correlation function and the 
Dyson variational method in the inverse scattering theory of quantum 
mechanics, and compare the latter with particle-hole theory. In the last 
section, we push the idea further to lift the global free energy functional 
into a larger space, so that it bears all the symmetries explicitly and, of 
course, generates all the thermodynamics as well. 

2. H A R D - R O D  FLUID ON A LATTICE 

We begin by looking at a lattice gas with core length m, i.e., a particle 
excludes m contiguous sites on each side from occupation by other 
particles. We denote by n(vx+,  ..... Vx+s) the s-tuple distribution for the 
specified configuration at the sites x + 1,..., x + s: v x = x if x is occupied; 
vx = 2 if it is empty. We also define 

n ( V x + , , . . . , V x + s ) - n ( . . . , x - l ,  2, vx+, , . . . ,Vx+,)  (1) 

n+(Vx+l ..... v x + , ) = n ( V ~ + x , . . . , V x + , , x + s + l , x + s + 2 , . . . )  (2) 

Due to the hard-core nature, we obviously have the following probability 
relations: 

n ( x ) = P ( x l x - m  ..... x -  1 ) n ( x - m  ..... x -  1) 

n (x)  
n ( ) c - m  ..... x -  1) (3) 

n - ( x ) + n  (2) 

n ( x ) =  P(x l  x + 1,..., x + m) n (x  + 1,..., x + m) (4) 

n+(x) 
= n()c--m,.. . ,  x +  1) (5) 

n + ( x ) + n + ( 2 )  

where P is the conditional probability. These relations result in a pair of 
important equations which will be called the "characteristic equations" 
(CE), 

n (2) n ( x - - m  ..... x - - l , 2 )  
(6) 

n ( x ) -  n (x )  

n + (0~) n(2, x +  1 ..... x + m )  
(7) 

n+(x )  n (x )  
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Let ux be an arbitrary external potential field, so that the probability of 
putting a particle at x is proportional to 

W x  = c ~ ( x )  ~ C # -  ux 

where /~ is the chemical potential and /~ = 1/kT has been set to unity for 
convenience. 

To find the (inverse) profile, namely to express the external field in 
terms of the particle densities, we form a local product 

n ( x - m + l , . . . , 2 ) n ( x - m + 2  ..... x + l )  n(s ..... x + m - 1 )  
. .  (8) 

wxn(x) wxn(x) wxn(x) 

By the definitions, this may also be written as 

n - ( ~ ) n + ( x - m + l ) n  ( x + l ) n + ( x - m + 2 )  n (x+m-1)n+( f f )  
(9) 

n-(x)n+(x) n-(x)n+(x) n (x) n+(x) 

or, regrouping terms, 

n-(~) n+(x--m + 1) n- (x  + 1) n+(x--1)n (x+m--1)n+(s 

n-(x)  n+(x) n-(x) n+(x) n-(x) n+(x) 
(10) 

Replacing the end factors by the "characteristic equations" (6) and (7) and 
transforming each factor in the middle by its definition, (10) yields 

n(x-m,._, 2 ) n ( x - m +  1,..., x+ 1) 

n(x) wxn(x) 

n ( x - 1  ..... x + m - 1 )  n(2,..., x+m)  

Wxn(X) n(x) 
(11) 

Comparing this with (8), we conclude that 

w x n(x- -m+l , . . . , f f )n(x- -m+2 ..... x+l ) . . .n (2 , . . . , x+m--1)  

n (x ) -  n ( i r - m , . . . , ~ ) n ( x - m + l  ..... x+ l ) . . . n ( f , . . . , x+m)  

m 1 l-[k=1[ --Y~s+l I n ( x + k - j ) ]  
= m r - I "+ l r  1 y l n ( x + k  ~ j~  ~ l , k = , ,  - - j =  

(12) 

which is the exact (inverse) profile equation for the nonuniform hard-rod 
fluid on a lattice. 
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3. C O N T I N U U M  FLUID A N D  LOCAL PRESSURE FIELDS 

One could go ahead and take the continuum limit of (12), but it is 
more instructive to proceed differently. All the essential features of the 
system are captured in CE, i.e., (6) and (7). We would like to find the local 
pressure fields by varying the core size while keeping the particle density 
fixed. For  this purpose, let us rewrite (6) as 

In n(x - m,..., 2) 

n (x; m) 
= - I n  - -  + In n(x) 

n- (2 ;  m) 

n - ( 2 )  l n n _ ( 2 ; m  1 

l n n - ( x ; 1 )  , n-(x;O)'~ 
n- (2)  m ~ ) + l n C l - n ( x ) ]  

- [ p ; ( m ) - p ; ( m - 1 ) ]  . . . . .  [ p x ( 1 ) - p ; ( O ) ]  + l n E l - n ( x ) ]  

where we have indicated the core dependences, and px(m)  may be 
regarded as the effective left pressure field (i.e., to the left of x) in a fluid 
of core size m. In the continuum limit, one has to rescale n to be unity at 
close packing, and the above equation becomes 

- d t p Z ( t ) = l n  1 -  dyn(y)  (13) 
- -  c t  

o r  

n ( x - a )  
p f (a) = 1 - ~_~  dy n(y) (14) 

Notice that we have used the same notations for the continuum variables. 
Similarly, if we start with (7), we end up with 

o r  

n(x + a) 
p+(a) = 1 _f~+a dy n(y) (16) 

where p+(a) is the effective right pressure (i.e., to the right of x) in the 
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fluid. Therefore, the corresponding truncated partition functions are simply 
given by 

~" (a) = exp dyp~(a )  (17) 
~ x  - -oO 

~+(a ) - - exp  d y p f ( a )  (18) ~ x  

With the symmetric pressure 

px(a )= 1 - ~fPx +,/2(a) + P +  a/2(a) ] 

and the total grand partition function 

F 2(a)  -- exp dx px(a) = S~(a)  = ~ oo(a) 
- - o o  

the (inverse) profile is, of course, given by 

n(x )Z  
z-- z,+ (19) Wx 

~ x  ~ x  

4. REVERSING THE LOGIC 

Now we would like to reverse the logic: varying the core from the very 
beginning of the game. Hence we extend the idea of RFL (6) to the non- 
uniform case. The physics is the same: the probability of creating an empty 
core of size a at x is equal to the Boltzmann factor corresponding to the 
total reversible work done. We can do this in three natural ways: 

1. Symmetrically: 

~x_+ a/2 a 
1 - ~ x  a/2 d y n ( y ) = e x p  - f o  dt p x ( t ) - e x p  fx(a)=-Z~ (20) 

2. To the left: 

1 - d y n ( y ) = e x p  - d t p ~ ( t ) = e x p f x ( a ) - Z ~ ( a )  (21) 
- - a  

3. To the right: 

fx +~ ;/ 1 - d y n ( y ) = e x p  - d t p + ( t ) = e x p f + ( a ) = - Z + ( a )  (22) 
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Of these, only one is independent; Z and Z + are related by the symmetry 
transformation a ~ - a ,  n ~ - n .  Hence locally, a Z-function will determine 
everything. We also call these CE--"characterist ic equations." They play a 
rather important  role, as they satisfy linear hyperbolic equations. Z -+ 
satisfy the first-order inhomogeneous equations 

(a,• • (23) 

with the same initial condition Z;+ (0) = 1, Z~ satisfies the wave equa- 
tion (think of a as the time) 

(•2 a 2 2 ZOx(a)=0 - v  ~xx) 

with the inital conditions Z~ = 1, ~aZ~ = - - / ' / ( X ) ,  and the speed v = 2. 
The physical meanings of these equations and initial conditions are clear: 
they form the differential CE and the solutions are certainly unique. 

Once we know a Z-function, Z -  say, we can follow the same proce- 
dure as in the last section to get the (inverse) profile, 

f 
x 

lnn(x)-#(x)= dz [pj(a)-p~(a)] 

x+a n(z) 
=ln Z~(a)-fx aZz;(a ) (24) 

and get all the direct correlation functions by differentiation (7) 

c , ( x ,  ..... Xs )  = 
~s--1[" __ # (X l )  _]_ in n ( x l ) ]  

6n(x2)...6n(x,) 
(25) 

In particular, if x ~< y <~ x + a, 

--1 ff+a dz n(z) (26) 
c2(x, y) Zy (a) [ Z z ( a ) ]  2 

5. A V A R I A T I O N A L  PROBLEM 

For the hard-rod fluid, it turns 
as a Riemann-Hilber t  problem by 
factorization technique. 2 We would 

out that c2 can be calculated directly 
using the well-known Wiener-Hopf  
like to connect this to a variational 

2 This was done by Baxter (8) for the uniform system in three dimensions under the PY condi- 
tion, which is exact in one dimension (M. Wertheim and E. Thiele had done this earlier 
using different techniques). Extension to the 1D nonuniform case was done in ref. 2. For the 
Wiener-Hopf techniques, one may refer to, e.g. Noble. c9) 
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problem that Dyson had considered when studying the Gelfand-Levitan 
construction in the inverse scattering theory of quantum mechanics. (1~ 

Recall the modified pair Ursell function: 

S(x ,  y) = (Ep(x) - n(x)] Ep(y) - n(y)] ) 

= n(x)  fi(x -- y)  + n2(x, y )  -- n(x)  n (y )  

=- n(x)  6(x -- y)  + H ( x  -- y)  

with p(x)  being the microscopic density Z i f ( x - x i ) .  We multiply the 
above equation by n - r e ( x )  from the left and n-1/2(y)  from the right,-and 
rewrite it in operator form 

~=I+B 

with the obvious definitions S = n-1/2Sn-1/2 and 121= n 1/2Hn 1/2. Clearly, 
is positive definite and has an inverse, which we denote by 

so that 

/~= e2(1 -02), e2 =/ t (1  +/~) (27) 

Here c2 = n 1/2~2n 1/2 is j u s t  the Ornstein-Zernike pair direct correlation 
function (25). Let P, be the diagonal kernel 

P t ( x , y ) = a ( x - y )  for x , y > t ;  =0 otherwise 

We consider the quantity 

W,(K)  = T r [ P t ( K K  ~c + (1 + K)/)(1 + K*))] (28) 

which is a functional bilinear in the kernel K and its adjoint K*. A little 
algebra shows that 

W t ( K  ) = Tr[Pt(d2 + (K+ c2) S(K* + c2))] > Tr[Pt(2] (29) 

so that W is bounded below for all K. Let K now belong to the class of 
causal kernels, that is, 

K(x,  y ) = O  for x > y 

Within this class, Wt(K)  is still bounded below and attains its minimum 
value 

M, = W,(A) 
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for a particular causal kernel A which is independent of t. The variation of 
(28) gives rise to the Marchenko equation (11) 

[A+I21+AI21](x, y ) = 0  for y>x (30) 

which is a linear integral equation of Fredholm type which determines the 
kernel A uniquely. This equation is equivalent to 

A +/~+ A~r--,}+ (31) 

for another causal kernel B. From this, it follows that 

(1 +/~+)(I + A +) -- (I + A) S(I + A +) 

But the right-hand side is self-adjoint, while the left is the unit operator 
plus an anticausal kernel. Therefore both sides must be equal to unity, and 
we have 

(1 +A)(1 +/~)= 1 

Combining this with (27) and (31), we find 

= 1 + / t - - ( 1  +/~){1 + B+) (32) 

d =  1 - ~ 2 = ( 1  +A+)(1 +A)  (33) 

The last equation is a nonlinear integral equation for A, sometimes called 
the nonlinear Gelfand-Levitan equation. (12~ Using these equations together 
with (31) and rewriting (28) in the form 

W,(K) = Tr [Pt(B +/?+ + ( K -  A) S(K + - A+))] (34) 

valid for any causal kernel K, we see explicitly that the minimum value 

M, = Tr [P,(/~ +/~*)] 

of W,(K) is attained at K =  J for every value of t. Dyson then went forward 
to show that i f /4  represents the spectral function, then the corresponding 
quantum mechanical potential in the Schr6dinger equation is given by 

d 2 d 2 ~ oo 
V(x) = - 2  ~ x  z Mx = - 2  ~ x  2 In Det 

x 

For our special system--a classical hard-rod fluid--C is short-ranged; 
in particular, A has only a range of a. More importantly, nz(X, y ) =  0 for 
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I x - y ]  ~< a, so that the Marchenko equation (30) becomes a simple linear 
equation for .4(x, y) in its range: x ~< y ~< x + a, 

fx r+a 
. d ( x ,  y )  - -  r t l / 2 (x )  nl/2(y) -- dz fit(x, z) nl/2(z) nl/Z(y) = 0 (35) 

and the solution is 

~z~(X, y) = F/1/2(X) ~,(y - -  X )  g.(X 71- a - -  y )  nl/2(y ) 
Z+(a) 

af~+(a) 
= -nl/2(x) ~ -  nl/2(y) (36) 

where f +  (a )=  in Z + (a) is defined in (22). We see again the presence of the 
"characteristic" Z-function. According to (33), 

e2=n-1/2O2 n 1/2=_n-1/2[.~, + ~ + . ~ , ~ 3  n 1/2 (37) 

which may be checked as agreeing with (26). 
We now make some comments. In order: (a)The factorizations (32), 

(33) are very general, regardless of the range of the operators; they depend 
only upon the topological nature of R, i.e., space can be disconnected by 
a point. (b)On the other hand, it is often the case that one operator has 
much shorter range than its inverse. For physical systems with short-range 
interactions, it is always C that has a shorter range, which is usually com- 
parable to that of the interactions except near some critical points. (c) It is 
the peculiarity of a hard-rod system that c2(x, y) = 0 for Ix - y[ > a (this is 
only approximately true for hard disks or spheres). This together with 
rtz(X , y )  = 0 for [X - -  y[ ~< a allows a successful Wiener-Hopf treatment. 

Why should there be such a variational principle in the first place? To 
motivate his formulation of the inverse scattering theory, Dyson had to 
resort to an artificial analogy with optics, (13) which in turn is a special case 
of the general problem of optimization of a linear control system (see, e.g., 
Kailath(14)). This reminds us of the Galerkin method used in the hole 
theory(15,16) of fluids. If we define 

p h ( r ) = e x p [ # ( r ) - - ~  ~b(r, ri)] 
t 

where ~b(r, r') is the pair interaction potential, then it is remarkable that 

(ph(r) ) = (p(r) ) = n(r) 
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It is then natural to assume that the fluctuations 6p~,(r)= ph(r ) -  n(r) and 
6p( r ) -  n(r) are approximately linearly related, so that the dimensionless 
quantity 

6ph(r) @(r') 
D(r) J dr' G(r, r') - -  

n(r) n(r') 

would be "small" for suitably chosen G. It can be shown that the correla- 
tion function (kernel of integral operator) 

A(r, r ' ) =  (D(r) D(r')> ~>0 

is positive semideflnite and is equal to (in operator form) 

a = y - g + c 2 + ( G - c 2 n ) ( n - * H n  l+n-1)(G--c2n)* (38) 

where y(r, r') = g(r, r') e r and g= 1 +n 1/2Hn 1/2. We can minimize A 
by choosing 

G = C2F/ 

so that 

Zlmm =- y -  g +  c 2 ~ O  (39) 

D =n -1 6ph--c2 6p (40) 

The PY approximation is precisely the statement that 

Ami n = y--  g +  c 2 = 0  (41) 

For our hard-rod system, this approximation gives the exact c2! 

Comparing with (29), we see essentially that 

K= -nl/ZGn-~/2 and Wt = Tr P,[D - (y - g)] 

Therefore, by using the particle-hole symmetry of fluids, (39) gives a much 
sharper bound. 

6. S Y M M E T R I E S  A N D  A L IFTED G L O B A L  F U N C T I O N A L  

The fact that the symmetries (a) particle-hole, (b) hard rod [this refers 
to the symmetry that the system can be described by different Z-functions; 
it is well known that the expressions for/~(x) and c2(x, y) take the guise 
of many different but equivalent forms] and (c) one dimension make the 
hard-rod statistical mechanics exactly solvable may prompt us to ask 
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deeper questions. What really are these symmetries? After all, we know 
very well why there is a minimization principle, because there exists a 
convex free energy functional. Can we push the idea of treating the core 
size as an extra independent degree of freedom and thus lift up the whole 
global functional? If we can, all the symmetries that we mentioned above 
would manifest themselves explicitly. The answer is affirmative. 

Let us consider all hard-rod systems with core size from 0 to b >~ a. 
Every member of this "super" ensemble may be generated by two 
independent procedures: (1)choosing a location - o o  < x <  oo for a rod; 
(2) increasing reversibly the core from 0 to b. Since there is no integral 
energy involved, the free energy in a given density is essentially the entropy. 
We define a "super" free energy functional by 

Fsup[n; b] .= f dx {b[n(x) In n(x) - 1 ] + Zx(b)[in Zx(b) - 1 ] } (42) 

Here Z could be any of Z + and Z ~ remembering that the "characteristic" 
Z-function is the (normalized) probability density of creating a hole. Then, 
the ordinary free energy density functional for a hard-rod system of core 
size a can be obtained by differentiating the "super" F~up: 

F[n] = fD b =~ F~up[n; b] 

For instance, if we choose Z - ,  

F= f dx {n(x)[ln n(x) - 1 ] - p~ (a) In Z ;  (a) } 

since Z x (0 )=  1, F would reduce to the ideal-gas free energy in the limit 
a ~ 0, as it should. To calculate the (inverse) profile, we start with 

6F 6 
tz(x) 6n(x~-lnn(x)+ ~ -~ ) f  dy In Z ; ( a )  

using the differential equation (23) satisfied by Z - ,  

6 [ #(x)=lnn(x)+-~-~f  dy n(y)-  in Z f ( a )  ay j 

The last term involving a total integration can be thrown away; we finally 
obtain 

kt(x)=lnn(x)+lnZT_f]+ady n(y) 
ZT(a) 
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which is just (24). One can calculate all the direct correlation functions by 
taking further functional derivatives of F with respect to n's. 

Indeed, now the symmetry is more evident in F~up, (42). In particular, 
the choice of a different Z-function corresponds to a different shift of x, 
while the integration makes/'sup (and hence F itself) invariant under such 
a shift. 
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